Invasion and adaptive evolution for individual-based spatially structured populations.
نویسندگان
چکیده
The interplay between space and evolution is an important issue in population dynamics, that is particularly crucial in the emergence of polymorphism and spatial patterns. Recently, biological studies suggest that invasion and evolution are closely related. Here, we model the interplay between space and evolution starting with an individual-based approach and show the important role of parameter scalings on clustering and invasion. We consider a stochastic discrete model with birth, death, competition, mutation and spatial diffusion, where all the parameters may depend both on the position and on the phenotypic trait of individuals. The spatial motion is driven by a reflected diffusion in a bounded domain. The interaction is modelled as a trait competition between individuals within a given spatial interaction range. First, we give an algorithmic construction of the process. Next, we obtain large population approximations, as weak solutions of nonlinear reaction-diffusion equations. As the spatial interaction range is fixed, the nonlinearity is nonlocal. Then, we make the interaction range decrease to zero and prove the convergence to spatially localized nonlinear reaction-diffusion equations. Finally, a discussion of three concrete examples is proposed, based on simulations of the microscopic individual-based model. These examples illustrate the strong effects of the spatial interaction range on the emergence of spatial and phenotypic diversity (clustering and polymorphism) and on the interplay between invasion and evolution. The simulations focus on the qualitative differences between local and nonlocal interactions.
منابع مشابه
Evolving mutation rate advances invasions Evolving mutation rate advances invasion speed of sexual species
Many species are shifting their ranges in response to global climate change. The evolution of dispersal during range expansion increases invasion speed, provided that a species can adapt sufficiently fast to novel local conditions. Mutation rates can evolve too, under conditions that favor an increased rate of adaptation. However, evolution at the mutator gene has thus far been deemed of minor ...
متن کاملInvasion fitness for gene-culture co-evolution in family-structured populations and an application to cumulative culture under vertical transmission.
Human evolution depends on the co-evolution between genetically determined behaviors and socially transmitted information. Although vertical transmission of cultural information from parent to offspring is common in hominins, its effects on cumulative cultural evolution are not fully understood. Here, we investigate gene-culture co-evolution in a family-structured population by studying the inv...
متن کاملThe adaptive dynamics of altruism in spatially heterogeneous populations.
We study the spatial adaptive dynamics of a continuous trait that measures individual investment in altruism. Our study is based on an ecological model of a spatially heterogeneous population from which we derive an appropriate measure of fitness. The analysis of this fitness measure uncovers three different selective processes controlling the evolution of altruism: the direct physiological cos...
متن کاملEvolution of discrete populations and the canonical diffusion of adaptive dynamics
The biological theory of adaptive dynamics proposes a description of the long-term evolution of a structured asexual population. It is based on the assumptions of large population, rare mutations and small mutation steps, that lead to a deterministic ODE describing the evolution of the dominant type, called the ‘canonical equation of adaptive dynamics’. Here, in order to include the effect of s...
متن کاملSpatially correlated extinctions select for less emigration but larger dispersal distances in the spider mite Tetranychus urticae.
Dispersal is a central process to almost all species on earth, as it connects spatially structured populations and thereby increases population persistence. Dispersal is subject to (rapid) evolution and local patch extinctions are an important selective force in this context. In contrast to the randomly distributed local extinctions considered in most theoretical studies, habitat fragmentation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of mathematical biology
دوره 55 2 شماره
صفحات -
تاریخ انتشار 2007